WATER-PRONOTED ORGANIC REACTIONS. ALDOL REACTION OF SILTL ENOL ETEERS WITH CARBOWYL CONFOUNDS UNDER ATHOSPEERIC PRESSURE AND MEUTRAL CONDITIONS.

André LUBIMMAU* and Elsa MEYER

Institut de Chimie Moléculaire d'Orsay, U.A. CNRS 462, Université Paris-Sud, Bt 420, 91405 Orsay, Prance.

(Received in Belgium 17 June 1988)

Bussary

As a consequence of the hydrophobic effect, the reaction between silyl enol ethers and aldehydes are shown to proceed without a catalyst in aqueous solution and neutral conditions providing crossed-aldol products with a syn selectivity, as under pressure, that is the reverse in comparison with the acid catalysed reaction. With α, β -unsaturated aldehydes, 1,2- and 1,4-addition were observed, whereas with a, ß-unsaturated ketones, only 1,4-addition occurred.

Introduction

The aldol reaction is one of the major way of forming carbon-carbon bonds for the construction of carbon chains with oxygen functionalities in 1,3-positions. This reaction known since 1838¹ has been normally carried out in protic solvents with base or acid as catalyst, but this conventional method has serious synthetic limitations, especially cross-coupling reactions. During the past two decades, several improvements of prime importance have been developed, providing crossedaldols with good regio- and stereo-selectivity². Among these new methods, the Lewis-acid promoted condensation of trimethylsilyl enol ethers with carbonyl compounds has become a popular tool in organic synthesis as it is relatively easily carried out, from readily available starting materials³. However, the method requires stoechiometric amount of Lewis acid such as TiCl4 which could be troublesome with acid labile substrates. In addition to that, the acidic conditions led sometimes to the dehydration products. To overcome these difficulties, several modifications of the original procedure were given, such as the catalytic use of Bu₄N⁺F⁻⁴ or Me₂AlCl⁵ as homogeneous catalysts or clay Montmorillonite⁶ as heterogeneous catalyst. Alternatively, the reaction was shown to proceed without catalyst but under high pressure⁷ to give good yield of aldol with a gyn selectivity, which is the reverse in comparison with the acid-catalysed reactions.

Organic reactions between two small hydrophobic molecules promoted by water was, up to now, almost confined to the Diels-Alder reaction⁸. As part of a program of organic synthesis in aqueous solution using glyco-organic substrates^{8c}, we wondered if the hydrophobic effect, the well-known entropy-driven association of hydrophobic molecules in water could be used to promote other reactions than [4+2] cycloadditions. The effect of water on the rate of non-polar reaction was suggested to be related to its high cohesive energy and to the high energy necessary to create a cavity in it, because of its high interfacial energy⁹. Thus, a reaction under kinetic control, between two small hydrophobic molecules (or between the hydrophobic moities of amphiphilic molecules) for which ΔV^f is negative must be accelerated in water as it is under pressure, to occupy the smallest volume of cavity. When several transition states are possible, the more compact should be favoured. Actually, this hypothesis is verified for Diels-Alder reactions⁸ and in a preliminary communication¹⁰, one of us has shown that the reaction between 1-trimethylsilyloxy cyclohexene and benzaldehyde (eq. A) could be conducted in water without any catalyst at atmospheric pressure to give in

moderate to good yield depending on the conditions the aldol products with a syn selectivity as under pressure. This reaction in aqueous solution occurred in a similar time, at a similar temperature providing the same syn/anti ratio than under 10 Kbars in CH₂C1₂. In this respect it may be significant that water has a cohesive energy density of 22 Kbars.

In view of the synthetic potential of this process, and to gain more insight into the hydrophobic effect, we have undertaken further investigations and we want now to report the scope of the reaction by varying the carbonyl acceptors and the co-solvent.

Results and discussion

OSiMe₂R

Table 1 shows the results obtained for the aqueous crossed-aldol reaction between silyl enol ether derivative of cyclohexanone and benzaldehyde under various conditions.

Table 1. Reactions of

with benzaldehyde under varying conditions. $R = CH_2$ \downarrow $R = tBu$ 2

a Vigorous magnetic stirring or violent shaking. ^b Sonication using a Bransonic 220, 50-kHz cleaning bath. C Isolated yield

Starting from the 1-trimethylsilyloxy cyclohexene 1, the best yield in aldol products was obtained when the reaction was conducted in a water-THF mixture (1:1) under ultrasonic waves (entry 5). In these conditions, the reaction mixture was heterogeneous and it could be assumed that the role of ultrasonic waves was only to disperse the organic phase in water as this way of mixing is without significant effect when the reaction was conducted in pure water (entry 3). This ability for ultrasound to generate extremely fine emulsions for mixture of immiscible liquids has been recognized for a long time¹¹.

It must be noted that in all cases, the reaction goes to completion, - i.e. complete disparition of the silyl enol ether - and the only side product is the **cyclohexanone resulting .from the corpatitive hydrolysir of the oily1 enol ether.** This side reaction could be reduced using the t-butyl dimethylailyl enol ether 2 (entry 10). In this case, higher temperature is required for completion of the reaction and the yield increased to 84% but with concomitant loss of syn selectivity. In all cases, syn selectivity was observed, as under pressure; that **is, it is the reverse of the selectivity observed under conditions** of **acidic** catalysis (entry 1). We assumed that the reaction proceeded through a six-membered **transition state and that the acceleration of the reaction in water is due to eteric compression of the transition state in a cavity of the water structure, giving rise predominantly to the boat sbapod transition state as under pressure', due to its tight character. This effect of the water structure is supported by vsryinq the co-solvent. First we may note for instance that the reaction did not** proceed in any other solvent than water, such as toluene, THF, CH₂Cl₂, CH₃CN as **vell as formamide or glycerol which have been shown to be somewhat struotured as measured** by the **Aildebrandt** parameter¹². Moreover, the co-solvent added to water is important, for instance, MeOH, which could be considered as "structure**breaker', lowered the yield to 358 (entry 8). Pure methanol gave a low gyp selectivity along with a low yield (entry 9).**

At this point, due to the physicochemical implications of this reaction, it is of **importance to ascertain the mechanism. Two possible pathways are depicted in scheme 1. In path a, slow hydrolysis of the sllylenol ether give rise to the tnol** form of cyclohexanone which could be trapped by benzaldehyde. In path b, a six**membered transition state favored by the hydrophobic** effect **led to C-C bond formation with transfer of tbe Xe3.91 group followed by hydrolysis of the trimethylsilyl ether.**

Scheme 1

In favor of **path b, in addit ion to the role of the solvent, ue may note for instance that cyclohexanone itself didn't give any aldol condensation. Moreover,** addition of acid (AcOB 10) inhibited the reaction. Likewise, slow hydrolysis of 1trimethylsilyloxycyclohexene in CH₂Cl₂ by wet silica gel in the presence of a large excess of benzaldehyde gave only traces of aldol products.

Then, we turned our attention to *the* **electrophilic character of the carbonyl acceptor. First** of **all, we must note that ketones are totally unreactive in this type of reaction. .The same observation has been made for the reaction under high pressure** in CH_2Cl_2 ¹³.

The results in table 2 show that the best yield was obtained with the strong electrophilic paranitrobenzaldehyde { (entry 13), whereas the yield was only modest with formaldehyde (eq. B) which exists in water, almost completely, in its hydrated form (entry 16).

^a Isolated yields

Next, we examined the regionalectivity with α,β -unsaturated carbonyl compounds (eq. C) for which the results are summarized in table 3.

Whereas acrolein gave rise to 1,2- and 1,4-additions, methyl vinyl ketone only gave 1,4-addition in agreement with the lack of reactivity of ketones in these water-promoted crossed-aldol reactions.

^a as judged by tlc, glc and NMR examination. ^b Isolated yields

In spite of the moderate yield, it must be emphasized that these smooth **conditions allowed us to prepare the new compounds &? and 12 which are very sensitive either in acidic or basic conditions, giving rise to the dehydration products.**

In conclusion, after the Dials-Alder reaction, we present here a new example of a reaction which is accelerated when water is the solvent due to the hydrophobic effect. Ouing to the smooth and neutral conditions which are required for this water-promoted **crossed-aldol reaction** and vhich **could led to very sensitive products, this type of reactions could gain synthetic applications. Other reactions having a negative activation volume are being examined in our laboratory.**

Bxper **imental**

Water vaa distilled twice before use. All organic solvents (reagent grade) **were used as received. Identification** of **products uas made by conventional methods using NMR spectroscopy (Bruker model AR 250 or Perkin Elmer model R-32 spectrometer) after purification by liquid chromatography and coaparison vlth** literature data. In repetitive experiments, the yield and the synianti ratio were determined either by NHR integration or analytical HPLC (Waters model 590 equipped with a differential refractometer model 410) using internal standard. 1-trimethylsilyloxy cyclohexene¹⁴ and 1-terbutyl dimethylsilyloxy cyclohexene¹⁵ **vere prepared according to the literature procedures and purified by distillation. Elemental analyses of new compounds uere performed by the Service Central de Ricroanalyse du CNR6.**

Standard procedure

A mixture of the silyl enol ether (3 mm011 and the specified amounts of carbonyl compounds (see tables 1, 2 and 3) in water (5 ml) or the specified **aqueoue solution (water - organic solvent, lrl, v/v, 5 ml) in a screw-capped tube wao either stirred at the specified temperature or immersed in an ultrasonic cleaning bath (Bransonic 220, 50 KHz) at 55.C. The reaction was monitored by silica gel tic. After dirparition** of the **silyl en01 ether, the aqueous mixture wae extracted with CH2C12. The combined organic layers were washed with uater, dried, filtered and evaporated. Silica gel column chromatography afforded the aldol products in pure form.**

2-[hydroxy (phenyl) methyllcyclobexanone³

 6 (syn) : m.p. 104°C (isopropanol) ¹R NMR (90 MHz, CDC1₃) : 8 5.40 (d, $J = 2.5$ Hz, **1 H, CljOA) <u>7</u>** (anti) : m.p. 74°C (ether-hexane) ¹H NMR (90 MHz, CDC1₃) : 8 4.80 (d, \bar{J} = 9 Hz, **1** a, **CIJOH).**

2-[hydroxy(4-nitrophenyl)methyllcyclohexanone.

In this case, the literature data are discordant^{4, 16}, so we give a complete **description for both syn and anti isomers including elemental analyses.**

6 (syn) : m.p. 132°C (ether-hexane) ¹H NMR (250 NBz, CDC1₃) 6 8.2 (d, \bar{J} = 9 Hz, 2 **H**, Ph), 7.5 (d, <u>J</u> = 9 Hz, 2 H, Ph), 5.50 (br s, 1 H, CHOH), 3.25 (d, J = 3 Hz, 1 **R. OH)**; 1.5-2.8 (m, 9 H). Anal. Calcd for $C_{13}H_{15}NO_4$: C, 62.64; H, 6.07; N, 5.62; **0, 25.61. Pound I C, 62.91; R, 6.19; N, 5.321 0, 25.79.**

g (anti) : **m.p.** 152° C (ether-hexane) 1 H NMR (250 MHz, CDC1₃) 6 8.2 (d, $\bar{y} = 9$ Hz, 2 **R, Ph), 7.5 (d, <u>J</u> = 9 Hz, 2 H, Ph), 4.9 (dd, <u>J</u> = 2, 8 Hz, 1 H, CHOH), 4.1 (d, <u>J</u> = 2 Hz, 1 B, OH), 1.5-2.7 (m, 9 B). Anal. Calcd for C₁₃E₁₅NO₄ : C, 62.64; B, 6.07;** N, 5.62; O, 25.67. Pound C, 62.52; H, 6.06; N, 5.41; O, 25.60.

2 -[hydroxy(4-methoxyphenyl)methyl]cyclohexanone⁴

 10 (syn) **t a.p.** 117°C (ether-hexane) ¹H NMR (250 MHz, CDC1₃) t 8 5.32 (d, J = 3 Hz, 1 **H**, CHOH)

11 (anti) : m.p. 76°C (ether-hexane) ¹B NMR (250 MHz, CDC1₃) : 8 4.73 (d, J = 9 **Hz, 1 H, CHOH).**

 2 -hydroxymethyl cyclohexanone 12¹⁷. Oil, ¹H NMR (90 MHz, CDC1₃) : 8 3.57 (dd, <u>J</u> = 4.6, 12 Hz, 1 H, CH₂OH), 3.76 $(dd, J = 6.4, 12 Hz, 1 B, CB₂OH).$

 $2-(3$ -oxobutyl)cyclohexanone 15¹⁸. Oil, ¹B NNR (90 MHz, CDC1₃) : δ 1.1-2.6 (m, 16 H, with a singlet at 2.12).

 $2-(3$ -oxopropyl)cyclobexanone 16^{19} . O11, ¹E NMR (90 MHz, CDC1₃) : 8 1.1-2.6 (m, 13 H), 9.72 (br s, 1 H).

2-(1-hydroxy 2-propenyl)cyclobexanone.

17 (syn) : oil, 1 E NMR (250 MHz, CDCl₃) : 8 1.5-2.5 (m, 9 H), 3.12 (br s, 1 H, OH), 4.6 (br s, 1 H, CHOH), 5.15 (dt, $\bar{y} = 2$, 10 Hz, 1 H, CH=CH₂), 5.29 (dt, $\bar{y} = 2$, 17 Hz, 1 H, CH=CH₂), 5.84 (ddd, $\bar{y} = 5.5$, 10, 17 Hz, 1 H, CH=CH₂). Anal. Calcd for $C_0H_{14}O_2$: C, 70.10; H, 9.15; O, 20.75. Found: C, 69.18; H, 8.97; O, 21.79. 10 (anti) : oil, ¹H NMR (250 MHz, CDC1₃) : 8 1.3-2.5 (m, 9 H), 3.75 (d, \bar{y} = 2 Hz, 1 H, OH), 4.28 (br t, \bar{J} = 7 Hz, 1 H, CHOH), 5.15 (ddd, \bar{J} = 1, 1.5, 10 Hz, 1 H, CH=CH₂), 5.25 (dt, \underline{J} = 1.5, 17 Hz, 1 H, CH=CH₂), 5.83 (ddd, \underline{J} = 7, 10, 17 Hz, 1 H, CH=CH₂). Anal. Calcd for C₉H₁₄O₂: C, 70.10; H, 9.15; O, 20.75. Found: C, 69.25; H, 9.24; O, 21.57.

Acknowledgments

This work was supported by the CNRS (OA 462) and the University of Paris-Sud.

References

- R. Kane, Ann. Physik Chem., 1838, 44, 475. idem, J. Prakt. Chem., 1838, 15, $\mathbf{1}$ 129.
- \mathbf{r} C. E. Heathcook in J.D. Morrison (Ed.), Asymmetric synthesis, vol. 3, Academic Press, New York, 1984, p. 111.
- $\overline{\mathbf{3}}$ (a) T. Mukaiyama, Organic Reactions, 28, 203. (b) T. Mukaiyama, K. Banno and K. Narasaka, J. Am. Chem. Soc., 1974, 96, 7503.
- E. Nakamura, M. Shimizu, I. Kuwajima, J. Sakata, K. Yokoyama and R. Noyori, 4 J. Org. Chem., 1983, 48, 932.
- Y. Naruse, J. Ukai, N. Ideda and H. Yamamoto, Chem. Lett., 1985, 1451. 5
- M. Kawai, M. Onaka and Y. Izumi, Chem. Lett., 1986, 1581. 6.
- $\overline{ }$ Y. Yamamoto, K. Maruyama and K. Matsumoto, J. Am. Chem. Soc., 1983, 105, 6963.
- (a) D.C. Rideout and R. Breslow, J. Am. Chem. Soc., 1980, 102, 7816. (b) P.A. 8 Grieco, K. Yoshida and P. Garner, J. Org. Chem., 1983, 48, 3139. (c) A. Lubineau and Y. Queneau, J. Org. Chem., 1987, 52, 1001. (d) H.J. Schneider and N.K. Sangwan, J. Chem. Soc., Chem. Comm., 1986, 1787.
- M.R.J. Dack, Chem. Soc. Rev., 1975, 4, 211. 9.
- A. Lubineau, J. Org. Chem., 1986, 51, 2142. $10¹$
- 11 J. Lindley and T.J. Mason, Chem. Soc. Rev., 1987, 16, 275.
- J.H. Hildebrandt, J.M. Prausnitz and R.L. Scott, in Regular and Related 12 Solutions, Van Nostrand-Reinhold, Princeton, 1970.
- K. Matsumoto, A. Sera and T. Uchida, Synthesis, 1985, 1. 1. 13
- 14 H.O. House, L.J. Czuba, M. Gall and H.D. Olmstead, J. Org. Chem., 1969, 34, 2324.
- I. Kopha and M.W. Rathke, J. Org. Chem., 1981, 46, 3771. $15₁$
- K. Banno, Bull. Chem. Soc. Jpn., 1976, 49, 2284. 16
- H.E. Zimmerman and J. English Jr, J. Am. Chem. Soc., 1954, 76, 2285. $17⁷$
- 18 E. Negishi and P. Luo, J. Org. Chem., 1983, 48, 2427.
- 19 N. Ono, E. Miyake and A. Kaji, J. Chem. Soc., Chem. Commun., 1983, 875.